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Neutrino Propagation: the vacuum                       

oscillation phenomenon
• Are neutrinos of a certain family always the same, once 

produced, or can they change?

• In 1957 Pontecorvo guessed the possibility of an 
oscillation mechanism, so that a state, for instance 
produced as Ine> , during its time evolution is allowed 
to gain a different family component,  for example, a 
muonic component:

I ψ>t = A(t) I ne >  + B(t) I nm > 

• It is clear that such a phenomenon, if real, means a 
violation of the family lepton number (even if the total 
lepton number is conserved)

• The interest for this phenomenon, called neutrino 
oscillation, was born after first results of the solar 
neutrino experiments, which detected a smaller flux 
with respect to what was expected from theoretical 
models: within the sun neutrinos are produced as ne , 
and detectors were sensible to ne only. Maybe that  a 
fraction of neutrinos changed  flavour during the travel?

• The positive and definite  answer  to this question has 
been given in 2001 by SNO experiment (with solar 
neutrinos) and  in the following year by KamLAND 
(with reactor anti-neutrinos)

http://images.google.it/imgres?imgurl=http://www.awa.tohoku.ac.jp/KamLAND/scape_design/kamland_s.jpg&imgrefurl=http://www.awa.tohoku.ac.jp/KamLAND/index_old.html&usg=__pmcQ9r2xkPKycy4J0WPBgyvAt4M=&h=691&w=502&sz=73&hl=it&start=2&tbnid=V1Yd5JJJZMK9OM:&tbnh=139&tbnw=101&prev=/images?q=kamland&gbv=2&hl=it
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Mass and flavour eigenstates (1) *

• Let’s consider, for semplicity, only two neutrinos families, ne e nm . These two neutrinos have 
a well defined flavour, by definition, since  they are produced  together with electrons or 
muons respectively. On the other hand we can’t say that also their mass is well defined.

• Let’s consider the space which is generated by I ne >  and  I nm > .        In the basis I ne >  and  
I nm >  the family lepton number operators are given by the following matrices:

• The states I ne >  and  I nm >  are consequently eigenvectors of such observables, Le and Lm , 
with eigenvalues 1 and 0 for I ne >, 0 and 1 for I nm >.

• Let’s now consider the mass observable M. M is not necessary diagonal in the basis I ne >  
and I nm > , so we can’t say that I ne >  and  I nm >  are mass eigenstates, i.e. they have defined 
mass.

• In other words, if we call I n1 > and I n2 > the mass eigenstates, with eigenvalues m1 and m2
respectively, they may not coincide with I ne >  and  I nm > . In the most general case  they will 
be linear combinations of them.

• If m1 and m2 are different, I n1 > and I n2 > will be orthogonal, since eigenvectors  
corresponding  to different eigenvalues.  Consequently they form a new orthogonal basis for 
the neutrino states space.

• *More properly,  in italian we call as ”eigenstates” the eigenvectors of a hamiltonian operator, but 
usually eigenstate and eigenvector are used witohut any differences; in this chapter we will use 
eigenstate and eigenvector with the same meaning.
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Mass and flavour eigenstates (2)

• Mass (or vacuum) eigenstates (n1, n2)  are in general connected with 

flavour eigenstates (ne, nm) produced by weak interaction through a 

rotation:


































2

1

cossin

sincos

n

n





n

n

m

e

• Namely, state I ne > is a linear superposition of two states with a well defined 
mass, m1 ed m2.

I ne > = cos I n1 >  + sin I n2 >

• If we measure the mass of the  I ne > state we will get m1 and m2 with probability 
cos2 and  sin2 respectively. 

• So, we can define the electron  neutrino mass as the mean value of the observed 
results of the mass measurements:

me = < ne I M I ne > = cos 2  m1 + sin 2  m2 .

• And analogously for the muon neutrino:

mm = < nm I M I nm > = sin2  m1 + cos 2  m2 .

2,1||  imM iii nn
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Free neutrino Hamiltonian
• The free Hamiltonian of a particle moving in vacuum is given by                       

H= (p2+M2)1/2

• If we fix the momentum p, then mass eigenstates are also hamiltonian 
eigenstates, with eigenvalues  Ei=(p2+mi

2)1/2 and so, in the basis of the mass 
aigenstates (n1, n2):

h=c=1
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• In the ultrarelativistic approximation (p>>mi) one has  Ei p mi
2/2p, so that we can 

write the hamiltonian in the mass basis as:

•Let’s remember that the hamiltonian is defined up to a constant, which, in a quantum 
mechanics picture, brings a time evolution phase equal for all vectors, so that it is 
unobservable. In this way we can delete the common  term “p” in the previous 
expression.

•Similarly we can add a common term -(m2
2+ m1

2)/4p; if we define                             
Dm2=(m2

2- m1
2), the result is, up to constants which are unobservable in the time 

evolution:
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The evolution of neutrino in vacuum

• Now that we know the hamiltonian, so we can study the time evolution of neutrinos 

with fixed mass and of those with fixed flavour.

• About the first ones (hamiltonian eigenstates), the time evolution only gives a 

change of phase. If we start from states I n1 > and I n2 > , their evolution will be:

I n1 (t)>  = exp (+ i Dm2 t/ 4p) I n1 >  ;        I n2 (t)>  = exp (- i Dm2 t/ 4p) I n2 > 

• Let’s now consider a neutrino with initial  flavour I ne > . This can be expressed in 

terms of mass eigenstates as

I ne > = cos  I n1 >  + sin  I n2 >

and the evolved state at time t will be:

I  > = cos  I n1 (t)> + sin  I n2 (t)>

=  cos  exp(+ i Dm2 t/ 4p) I n1 >  + sin  exp(- i Dm2 t/ 4p) I n2 >

• We can see that the problem is completely defined by two parameters: 

- the mixing angle 

- the difference between neutrinos squared masses Dm2=(m2
2- m1

2)
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Survival and transformation probability 
• Neutrinos are produced by weak interactions and they are revealed through weak 

interactions, which project their state in a state with fixed flavour.

• Let’s consider a ne  produced by a weak interaction at time t=0, propagating in 

vacuum: we want to compute the probability of observing it (that means it is still ne) 

after  time t (survival probability):

• As we have already seen, the time evolution of a state which is initially ne is given 

by:
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and from this the survival probability, so that the neutrino initially born as ne is still

itself after a time t  

• If we project this vector on  I ne > we can compute the survival amplitude:

• Note that we can have oscillation only if  0 and Dm2 0

• Note also that both probabilities depend on the neutrino momentum p

The probabilty of transformation into another flavour, Pem , can be obtained by the law 

of conservation of probability (unitariety of evolution operator), namely Pee + Pem =1, 

so that:

)]4/([sin2sin1 222 ptmPP eee D m
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Neutrino evolution as function of distance: the vacuum oscillation length

• Let’s suppose to observe neutrinos at a distance L from prodction. Neutrinos travel 

with a velocity close to that of light, so we can set v=c; the taken time will 

consequently be t=L/c, namely t=L if we use c=1.

• We can also observe that neutrinos are ultrarelativistic particles, so that we can 

approximate their momentum p with their energy E.

• So we can write  the survival and trasformation probability as 

and

• It is  useful to introduce the oscillation length, LV, defined as the distance at which 

the oscillation has been completed, and so the phase must be p, i.e.

Lv=4pE/Dm2

In terms of LV we get: 
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• The oscillation length is the most important parameter in oscillation experiments, 

since  in practice there is no oscillation (Pee=1, Pem=0) if L<< LV . In order to see 

the oscillation  phenomenon one should have L≈LV or greater.

• The oscillation length can be espressed in “ordinary” units, by putting a 

convenient number of    and c:
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Experimental sensibility

n Source <En> L Dm2[eV2]

reactors ~MeV ~10 m      10-1

“long-base” reactors ~MeV ~100 km 10-5

sun ~MeV ~100 Mkm 10-10 - 10-11

accelerators ~ GeV ~100 m 10

“long-base” accelerators  ~GeV ~100 km 10-2

atmospheric ~GeV ~10000km 10-4

For a physical distance L and neutrino energy E one can explore 

the neutrino  masses differences, such that  L≈ LV
.

The following table shows the main features of experiments
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Diasappearance and 

appearance experiments

• In principle, we have two different

methods to verify the existence of the oscillation phenomenon:

a)  disappearance: we produce neutrinos with a given flavour, and we reveal neutrinos 
with the same flavour, after a distance L. If oscillations occur, we’ll find a smaller 
number of neutrinos;

b)  appearance: we produce neutrinos with a certain flavour, and then we reveal 
neutrinos of different flavour after a distance L.

• In a disappearance experiment, we must be sure about the number of produced 
neutrinos number. For a long time, the results of experiments on solar neutrinos 
(created to detect electron neutrinos) were smaller than predictions. This could be 
interpreted as a disappearance experiment, but one could question  the prediction 
about the production of solar neutrinos.

• Now we have disappearance experiments with electron anti-neutrinos from nuclear 
reactors, where we can determine the number of produced neutrinos very precisely.

• We also have appearance experiments on solar neutrinos, in which we  reveal not 
only electron neutrinos but also  those of other families.

• Moreover, there are experiments with accelerators and atmospheric neutrinos,  
which confirm the oscillation phenomenon.
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Reactors experiments for anti-ne oscillations
• Within reactors electron anti neutrinos are produced with energies of the order of 

MeV

• The detection occours through charged current reactions anti-ne + p  -> n + e+

• Other flavour neutrinos can be produced, but they are “sterile”, since the CC 

reaction  anti-nm + p  -> n + m+ needs higher energies (mm=106 MeV)

• So we can perform  only disappearence experiments, that means the measurement of 

the neutrino survival probability, averaged on the neutrino energetic spectrum* :
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Probability and mean probability

• If the energy is fixed, the survival probability Pee oscillates between 1 and 1-sin22

• If we have many energies over which we must average, the oscillating term 
containing the energy goes to ½, so that the behaviour of <Pee > is:

1)  at “small” distances : <Pee > =1

2)  at “large” distancies: <Pee > 1- 1/2 sin22

where “small” and “large” are referred to Lv, computed at the mean energy of 
produced neutrinos:  if <E> = 3.5 MeV then Lv105 m

MeV5.3E 

• The survival probability at a given energy and that averaged on a reactor energy 
spectrum, are similar, but there are also some differences. The two plots show the 
situation corresponding to Dm2=7 10-5 eV2 and sin22=0.8 (these parameters are 
chosen for reasons we’ll understand later).  

E=3.5 MeV <E>=3.5 MeV

  )]4/([sin2sin1, 222 ELmLEPee D 
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KamLAND, the proof of 

reactor anti-neutrinos

oscillation

• The main parameter for a reactor experiment is the 
distance between detector and reactor

• Since the neutrino flux scales as 1/L2, long distances
experiments need large detectors.

• Over several, years experiments at  distances of
hyndreds of meters (also one kilometer from reactors) 
were performed, always with negative results.

• The key was KamLAND, a detector with 1000 tons of 
liquid scintillator, with about one thousand
photomultipliers. 

• Kamland is surrounded by many reactors,  so that the 
total flux turns out to be about 105 cm2/s

• The mean distance from reactors (weighted on flux) is
about 180 km

• We can measure the energy released by charged
particles (as electrons and positrons) and that from 
gamma ray, and we obtain about 300 photo-electrons for 
each MeV given to the detector. 

http://upload.wikimedia.org/wikipedia/en/d/d0/KamLAND_schematic.png
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Anti-neutrino detection 

method

• The classical  process  is the 

inverse beta reaction

ne + p → e+ + n

• Target protons are those contained in the organic scintillator, CnH2n,

• The positron  looses energy during the slowing down and then it annihilates with an 

electron.

• The energy which is released is equal to that of netrino, but for the reaction 

threshold (1.8 MeV), plus the annihilation energy of the positron (1MeV). In total 

the energy of the prompt signal is equal to that of neutrino, but for 0.8 MeV

• The neutron thermalizes, and after a mean time ~200ms it is captured by a proton, 

emitting a gamma ray at 2.2 MeV
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KamLAND result:

the proof of neutrino oscillation

252 106.7 eVxm D

• The picture summarizes the results 
of 50 years of reactor experiments.

• In 2002 KamLAND revealed antine

from reactors at L200 km

• Only 60% of antine survives during 
the travel source-detector.

• Neutrinos oscillate:              

1) since Dm2= m1
2 -m2

2  0, then, at 
least for one neutrino m  0

2)  The family lepton number is not 
exactly conserved, but it is 
conserved only on distances which 
are short with respect to the 
neutrinos oscillation length.

92.02sin2 Best fit: [PRL 90 (2003) 021802]
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SNO: appearance experiment

• SNO (Sudbury Neutrino Observatory) 

provided the “smoking gun” for oscillation, 

since it detected neutrinos with a different 

flavour  from the  original one.

• SNO  is placed in a Nickel mine in Sudbury, 

Canada, about 2000 m below ground, 

corresponding to about 6000 m. w. e. depth.

• It uses 1000 tons of D20, surrounded  about 

10.000 phototubes.

• It observes reactions induced by boron solar 

neutrinos, the most energetic component of 

neutrinos from the sun.

• The crucial point is that SNO is sensitive 

both to electron and to other flavours 

neutrinos.
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Reactions induced by neutrinos in SNO

This reaction can be induced by all kind of neutrinos, 

with the same cross-section. The signal is now given 

by the neutron capture.

This reaction can only be induced by electron 

neutrinos. Electrons are diffused almost isotropically. 

The signal is given by electron Cherenkov radiation.

This reaction can be induced by ne, but also by other 

kind of neutrinos, with a smaller cross-section (about 

1/6). Electrons are produced  in the direction of  

incoming neutrino, and they are detected  by  

Chernkov radiation. 
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SNO results

• Results of different measurements can 

be shown in a plane with electron 

neutrinos flux on the horizontal axis, 

while other neutrinos types is on the 

vertical scale.

• NC interactions measure the total flux

f=fe+fmt. Whatever their fate, this is the 

flux of neutrinos which left the sun as

electron ones.

• CC interactions only reveal electron 

neutrinos, and consequently they are 

described by a vertical band.

• Electron scattering interactions, ES, 

measure an effective flux.

f=fe+ 1/6  fmt since the  nm,t 

cross.section is 1/6 of that for the ne . 

• The important result is that the 

curves intersect in a point

fmt≠0

• Results for single fluxes, in the 

units of the picture, are:
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Survival probability in vacuum and in 

matter
• We expect that, by weighting over  energy, and after a                                                     

baseline as long as the Earth-Sun distance, the survival                                             
probability should reach  its asymptotic value:

<Pee >  = 1- 1/2 sin22
• We saw with KamLAND that the mixing angle is close to

maximum, so we should expect:

<Pee >  ≈ 0.54

• On the other hand the SNO result is: 

<Pee > =

• The two results are not contradictory. The explanation is in the fact that neutrinos 
crossing the Sun experience  interactions with matter, that are different for electron 
neutrinos and for other kind of neutrinos. 

• This alters the mixing angle in matter with respect to that in vacuum. Also the 
mixing angle becomes dependent on energy. The explaination of such a 
phenomenon is not in the part of this course, but it is summarized in the appendix 
for those who are interested. 

• The effective survival probabilty is shown in figure.At low energies we get the 
“vacuum result, while at higher energies, as for Boron , the survival probability is 
smaller.
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Atmospheric neutrinos

• From interaction of primary cosmic 
rays (mainly protons) in the high 
atmosphere, pions are produced, 
and from their decay also muon and 
electron  neutrinos and their 
antiparticles

• If the production of  p+ and p- are 
equal, we expect that the number of 
muon neutrinos and anti-neutrinos 
is twice that for electrons . 

• The energy spectrum of these  
atmospheric neutrinos is quite wide: 
from MeV to 103 TeV, but with a 
peak  around 1 GeV. 
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• Kamiokande experiment used 

several ktons of water to detect the 

Cherenkov light emitted by 

charged leptons ( electrons or 

muons ) produced by the 

interaction of neutrinos on H and 

O nuclei (n+N->l +X) 

• We can distinguish electronic and 

muonic events.

• The first observed result was an 

anomalous event ratio  with 

respect to the calculated one.

Inner counter: 

948  20-inch PMTs

Anti-counter

123  20-inch PMTs
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Atmospheric neutrinos: detection (1)
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Atmospheric neutrinos: detection(2)

• The Super-Kamiokande experiment employed 50 

kTon of water and 11000 phototubes at1000 m 

depth.

• Super-Kamiokande could compare the number of 

neutrinos coming from “above” and “below” the 

detector. These last ones travelled a longer way, 

since they crossed the whole Earth, and so the have 

a bigger oscillation probability.

1
~
2sin2 

•SuperK  observed an 

azimuthal suppression of 

the “muonic” signal, while 

the “electronic” one  was 

NOT suppressed.

•This is consistent with the 

oscillation nm -> nt  with: 

232 eV10x2.2m~ D
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Accelerator neutrinos: K2K experiment

• Muonic neutrinos beam: “long base”
disappearance experiment (d=250 Km)

• Close detector :1 Kton H2O: it 
measures the number of events and the 
spectrum before the oscillation

• Far detector: 50 Kton, it reveals the 
decreased number of events and the 
distorsion of the spectrum

• Oscillation nm -> ?  with:

• It is consistent with atmospheric 
neutrinos results on nm -> nt 

1
~
2sin2 

232 108.2~ eVxm D
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• nm produced at CERN (Geneva) 
are shoot towards the Gran 
Sasso .

• In their travel of about 730 km, 
nm can oscillate into nt.

• The Charged Current
interaction of nt with matter
produce the charged lepton t, 
which can be detected through
its decay processes

• The Opera experiment at LNGS 
has detected these tau leptons, 
confirming the hypothesis of nm -

nt oscillation.

From Cern to Gran Sasso
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Oscillations picture
• Experiments at reactors have shown  that anti-ne

oscillate to other kind of neutrinos. Oscillation of  
ne have been seen in solar neutrino esperiments. 
This oscillation phenomenon corresponds to a 
difference in  squared masses :     

Dm2  105eV2

• From atmospheric neutrinos and  long-base 
accelerator experiments, one has seen another  
oscillation phenomenon , that of nm into nt . In 
this case the difference in the squared masses is of 
the order of: 

• Note that these processes are different ones.

232 102~ eVm D
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Neutrino masses picture
• The existence of two different oscillation processes tells us

that we have at least two mass eigenstates with non zero 

mass 

232
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• The absolute mass scale (m1
2) is unknown.

• Experiments on direct measurements of anti-ne mass from 

tritium decay (mne
2 <10 eV2) give information on all mi:
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Appendix

• Neutrino propagation in matter
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Neutrino propagation in matter
• Up to now we only considered neutrinos propagating in vacuum. But, for

instance, solar neutrinos, before being detected, must cross solar and terrestrial

matter. 

• Neutrino interactions with matter occur through neutral current interaction NC 

(Zo exchange)  and charged current interactions CC (W+-exchange). 

• REMARK:

– 1) NC interaction produces elastic scatterings n+ Nn+N,  where N=p,n not 

mediated by CC interactions.  

– 2) NC interaction cannot distinguish flavour, namely the scattering amplitude is 

the same for any neutrino type.

– 3) In ordinary matter (e,n,p) only electron neutrino can undergo charged current 

interactions with matter.
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Matter interaction Hamiltonian (1) 

• The Hamiltonian describing the coherent interaction with ordinary matter

will contain neutral current interaction terms (NC) and those of charged

current interaction (CC). In the flavour basis we can write:

• Since neutral current interaction does not depend on flavour, UCN contributes to 

Hm with a multiple of the identity operator. It only introduces some phase 

factors in the time evolution of a flavour state and so it is unrelevant .
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• So we only have to compute the charged current contribution.
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Some calculations on CC interaction potential

• Let’s remember that the EM interaction potential between two electrons is               

V(r )=e2/r, so that the interaction energy with a charge distribution with number 

density ne will be: 
)r(n

|rr|

e
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e

2
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• CC interaction energy of a neutrino with an electron distribution ne is like: 
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• For low energy neutrinos (<Mw) we are in the contact interaction approximation 

[rw 0 ] and the above expression becomes: 
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eWCC nGn
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e
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• In other words, since weak inetaction (in the low energy limit) is a contact 

interaction, the neutrino “feels” the charge distribution where it is. In the 

EM interaction, at the contrary, the electron feels also the distant charges, 

since the EM force is a long range interaction.

• A more precise calculation (due to Wolfenstein in 1978) brought to: 

eFCC
nG2V 

Where GF=Fermi constant10-5 Gev -2

h=c=1



• Let’s remember that when we dealt with oscillation in  vacuum  we 

introduced a vacuum oscillation length

• The comparison between these two lengths will decide how neutrinos 

propagate in matter
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Matter interaction Hamiltonian (2) 

• At this point we are able to write the Hamiltonian of the coherent interaction

with ordinary matter, in the flavour basis:
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• Where +… means that we neglect terms which are multiples of the identity operator, 

and in order to obtain the last passage we added a term -√2 GFne

• Note that the measurement units of the last term are [ E-2 E3 ] = [ E ] in the natural 

units system, since the hamiltonian is an energy. 

• We can define a refraction length as
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Vacuum Hamiltonian in flavour basis
• Let’s remember the relation connection between the two bases:
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• We can write the vacuum Hamiltonian in the basis (ne, nm), but for 
multiples of the identity operator:
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Total Hamiltonian= vacuum+matter

• The total hamiltonian describing neutrino propagation in the flavour basis is

given by, but for multiples of identity operator:
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• In general,to find the oscillation probability, we should integrate numerically the 

evolution equation. The case of constant matter density is simpler…...

• The flavour states evolution is consequently given by:

• Note the two contributions:  1) mass                           and  2) matter

When                       , so LV<LM we say that the oscillation is dominated by 

masses, and we are in the case of vacuum oscillation. In the opposite case we 

say that the oscillation in dominated by matter.
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Mixing angle in matter
• The full Hamiltonian is not diagonal neither in the mass basis, nor in the flavour

one. 

• However it can be diagonalized in a new basis, called matter eigenstates and 

indicated as Ini m>.

• In order to do this we should make a rotation with mixing angle m. 
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Concluding, we have just found the same formalism of vacuum oscillations but with: 

Dm2  D2        e   m

and that the separation between the two eigenvalues is D2/2E where: 

• It can be demonstrated that the mixing angle is given by:
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Oscillation probability in matter with constant density
• So, the probability that an electron neutrino with E energy is transformed into 

another flavour, after travelling a distance L in ordinary matter with constant density 

is:
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• 1) Maximum oscillation amplitude if:                                                             

Existence of RESONANCE: even for small mixing angles , we can have large 

oscillation,  the mixing effect being increased by interaction with matter.

• 2) There is oscillation if:                                                                                      

RESONANCE efficiency: the resonance effect occurs if LLrif 

• 3) If the matter term is negligible(                          ) we find again vacuum 

oscillations. (Verify that this occurs for terrestrial neutrinos)

• 4) for fixed density and Dm2, the suppression depends on the neutrino energy.
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Survival probability in the solar interior
• A good appoximation for the survival probability of a solar neutrino, after 

travelling the entire Sun, if sen2 21 and Dm210-4 eV2 is given by:
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• Due to the conditions of the Sun centre where neutrinos are produced (no=1026

cm-3 ) and to Dm210-4 eV2 , the transition between the two regimes occours for 

MeV energies. So, in the same production region, electronic neutrinos with 

energies higher than MeV are more suppressed than lower energies ones.
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